Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
isNatList(n__nil) → tt
length(nil) → 0
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = x1 + 2·x2
POL(U42(x1)) = 2·x1
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
U11(tt) → tt
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1)) = 1 + x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = 2·x1 + 2·x2
POL(U42(x1)) = 2·x1
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1)) = x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = 1 + 2·x1 + x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = x1 + x2 + 2·x3
POL(U62(x1, x2)) = 2·x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
U31(tt) → tt
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1)) = x1
POL(U21(x1)) = x1
POL(U31(x1)) = 1 + x1
POL(U41(x1, x2)) = x1 + 2·x2
POL(U42(x1)) = 2·x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
Used ordering:
Polynomial interpretation [25]:
POL(0) = 0
POL(U11(x1)) = 1 + x1
POL(U21(x1)) = x1
POL(U41(x1, x2)) = 2·x1 + 2·x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = 2·x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 2 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → ISNAT(activate(N))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → U521(isNatList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__0) → 01
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
U411(tt, V2) → ISNATILIST(activate(V2))
U621(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
U621(tt, L) → S(length(activate(L)))
ACTIVATE(n__zeros) → ZEROS
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__s(X)) → S(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → ACTIVATE(N)
ZEROS → CONS(0, n__zeros)
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ZEROS → 01
ACTIVATE(n__length(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → ISNAT(activate(N))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → U521(isNatList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__0) → 01
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
U411(tt, V2) → ISNATILIST(activate(V2))
U621(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
U621(tt, L) → S(length(activate(L)))
ACTIVATE(n__zeros) → ZEROS
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__s(X)) → S(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → ACTIVATE(N)
ZEROS → CONS(0, n__zeros)
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ZEROS → 01
ACTIVATE(n__length(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 15 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ACTIVATE(N)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ACTIVATE(n__length(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(ISNAT(x1)) = 2·x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(U611(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(U621(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ACTIVATE(N)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ACTIVATE(n__length(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__length(X)) → ACTIVATE(X)
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(ISNAT(x1)) = 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(LENGTH(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U611(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(U621(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ACTIVATE(N)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 11 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The graph contains the following edges 1 > 1
- ACTIVATE(n__s(X)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ISNAT(x1)) = x1
POL(U21(x1)) = 1
POL(U51(x1, x2)) = 0
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = x1
POL(U62(x1, x2)) = 1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = x1
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(n__0) = 0
POL(n__cons(x1, x2)) = 0
POL(n__length(x1)) = 0
POL(n__nil) = 0
POL(n__s(x1)) = 1 + x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 1 + x1
POL(tt) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__s(X)) → s(activate(X))
activate(X) → X
activate(n__nil) → nil
activate(n__zeros) → zeros
activate(n__length(X)) → length(activate(X))
activate(n__0) → 0
U51(tt, V2) → U52(isNatList(activate(V2)))
U21(tt) → tt
U62(tt, L) → s(length(activate(L)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
zeros → n__zeros
zeros → cons(0, n__zeros)
0 → n__0
U52(tt) → tt
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(X) → n__length(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, V2) → ISNATLIST(activate(V2)) at position [0] we obtained the following new rules:
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__zeros) → ISNATLIST(zeros)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__nil) → ISNATLIST(nil) at position [0] we obtained the following new rules:
U511(tt, n__nil) → ISNATLIST(n__nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__nil) → ISNATLIST(n__nil)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__zeros) → ISNATLIST(zeros) at position [0] we obtained the following new rules:
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__0) → ISNATLIST(0) at position [0] we obtained the following new rules:
U511(tt, n__0) → ISNATLIST(n__0)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__0) → ISNATLIST(n__0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros)) at position [0] we obtained the following new rules:
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules:
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U511(tt, n__length(x0)) → ISNATLIST(length(activate(x0)))
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U511(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + 2·x2 + x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(activate(x0))), activate(y1))
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATLIST(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = 2·x1 + 2·x2
POL(U511(x1, x2)) = 2·x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 1 + x1 + x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(activate(x0))), activate(y1))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U21(x1)) = 0
POL(U51(x1, x2)) = x2
POL(U511(x1, x2)) = x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1
POL(U62(x1, x2)) = 1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = 1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__s(X)) → s(activate(X))
activate(X) → X
activate(n__nil) → nil
activate(n__zeros) → zeros
activate(n__length(X)) → length(activate(X))
activate(n__0) → 0
U51(tt, V2) → U52(isNatList(activate(V2)))
U21(tt) → tt
U62(tt, L) → s(length(activate(L)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
zeros → n__zeros
zeros → cons(0, n__zeros)
0 → n__0
U52(tt) → tt
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(X) → n__length(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
U511(tt, n__s(x0)) → ISNATLIST(s(activate(x0)))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U62(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__length(x1) ) = | | + | | · | x1 |
M( U61(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( U511(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__s(X)) → s(activate(X))
activate(X) → X
activate(n__nil) → nil
activate(n__zeros) → zeros
activate(n__length(X)) → length(activate(X))
activate(n__0) → 0
U51(tt, V2) → U52(isNatList(activate(V2)))
U21(tt) → tt
U62(tt, L) → s(length(activate(L)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
zeros → n__zeros
zeros → cons(0, n__zeros)
0 → n__0
U52(tt) → tt
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(X) → n__length(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(activate(x0), x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U62(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__length(x1) ) = | | + | | · | x1 |
M( U61(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( U511(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__s(X)) → s(activate(X))
activate(X) → X
activate(n__nil) → nil
activate(n__zeros) → zeros
activate(n__length(X)) → length(activate(X))
activate(n__0) → 0
U51(tt, V2) → U52(isNatList(activate(V2)))
U21(tt) → tt
U62(tt, L) → s(length(activate(L)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
zeros → n__zeros
zeros → cons(0, n__zeros)
0 → n__0
U52(tt) → tt
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(X) → n__length(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ NonTerminationProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(activate(x0), x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
s = U511(isNat(n__0), activate(n__zeros)) evaluates to t =U511(isNat(n__0), activate(n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
U511(isNat(n__0), activate(n__zeros)) → U511(isNat(n__0), n__zeros)
with rule activate(X) → X at position [1] and matcher [X / n__zeros]
U511(isNat(n__0), n__zeros) → U511(tt, n__zeros)
with rule isNat(n__0) → tt at position [0] and matcher [ ]
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
with rule U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros)) at position [] and matcher [ ]
ISNATLIST(n__cons(n__0, n__zeros)) → U511(isNat(n__0), activate(n__zeros))
with rule ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U621(tt, L) → LENGTH(activate(L))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATILIST(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = x1 + 2·x2
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt, V2) → ISNATILIST(activate(V2)) at position [0] we obtained the following new rules:
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, n__0) → ISNATILIST(0)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2)) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt, n__zeros) → ISNATILIST(zeros) at position [0] we obtained the following new rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__zeros) → ISNATILIST(n__zeros)
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1)) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt, n__0) → ISNATILIST(0) at position [0] we obtained the following new rules:
U411(tt, n__0) → ISNATILIST(n__0)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__0) → ISNATILIST(n__0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt, n__nil) → ISNATILIST(nil) at position [0] we obtained the following new rules:
U411(tt, n__nil) → ISNATILIST(n__nil)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__nil) → ISNATILIST(n__nil)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1)) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1)) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros)) at position [0] we obtained the following new rules:
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules:
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U411(tt, n__length(x0)) → ISNATILIST(length(activate(x0)))
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATILIST(x1)) = x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = 2·x1 + 2·x2
POL(U51(x1, x2)) = 2·x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(activate(x0))), activate(y1))
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATILIST(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = 2·x1 + 2·x2
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = 2·x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(activate(x0))), activate(y1))
The remaining pairs can at least be oriented weakly.
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATILIST(x1)) = x1
POL(U21(x1)) = 0
POL(U411(x1, x2)) = x2
POL(U51(x1, x2)) = 1
POL(U52(x1)) = 0
POL(U61(x1, x2, x3)) = 1 + x2 + x3
POL(U62(x1, x2)) = 1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatList(x1)) = 1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = 1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 1
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zeros) → zeros
activate(n__0) → 0
activate(X) → X
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
U62(tt, L) → s(length(activate(L)))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
zeros → cons(0, n__zeros)
0 → n__0
zeros → n__zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(activate(x0), x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U62(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__length(x1) ) = | | + | | · | x1 |
M( U61(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
Tuple symbols:
M( U411(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zeros) → zeros
activate(n__0) → 0
activate(X) → X
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
U62(tt, L) → s(length(activate(L)))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
zeros → cons(0, n__zeros)
0 → n__0
zeros → n__zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
U411(tt, n__s(x0)) → ISNATILIST(s(activate(x0)))
The remaining pairs can at least be oriented weakly.
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U62(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__length(x1) ) = | | + | | · | x1 |
M( U61(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
Tuple symbols:
M( U411(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zeros) → zeros
activate(n__0) → 0
activate(X) → X
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
U62(tt, L) → s(length(activate(L)))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
zeros → cons(0, n__zeros)
0 → n__0
zeros → n__zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(activate(x0), x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
s = U411(isNat(n__0), activate(n__zeros)) evaluates to t =U411(isNat(n__0), activate(n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
U411(isNat(n__0), activate(n__zeros)) → U411(isNat(n__0), n__zeros)
with rule activate(X) → X at position [1] and matcher [X / n__zeros]
U411(isNat(n__0), n__zeros) → U411(tt, n__zeros)
with rule isNat(n__0) → tt at position [0] and matcher [ ]
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
with rule U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros)) at position [] and matcher [ ]
ISNATILIST(n__cons(n__0, n__zeros)) → U411(isNat(n__0), activate(n__zeros))
with rule ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.